Ramsey numbers for tournaments

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zarankiewicz Numbers and Bipartite Ramsey Numbers

The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...

متن کامل

Ramsey numbers for trees

For n ≥ 5 let T ′ n denote the unique tree on n vertices with ∆(T ′ n) = n − 2, and let T ∗ n = (V, E) be the tree on n vertices with V = {v0, v1, . . . , vn−1} and E = {v0v1, . . . , v0vn−3, vn−3vn−2, vn−2vn−1}. In this paper we evaluate the Ramsey numbers r(Gm, T ′ n) and r(Gm, T ∗ n), where Gm is a connected graph of order m. As examples, for n ≥ 8 we have r(T ′ n, T ∗ n) = r(T ∗ n , T ∗ n) ...

متن کامل

Ramsey numbers for local colorings

The concept of a local k-coloring of a graph G is introduced and the corresponding local k-Ramsey number r 1 ~c(G) is considered. A local k-coloring of G is a coloring ofits edges in such a way that the edges incident to any vertex of G are colored with at most k colors. The number r 1 ~c(G) is the minimum m for which Km contains a monochromatic copy of G for every local k-coloring of Km. The n...

متن کامل

Planar Ramsey numbers for cycles

For two given graphs G and H the planar Ramsey number PR(G,H) is the smallest integer n such that every planar graph F on n vertices either contains a copy of G or its complement contains a copy H . By studying the existence of subhamiltonian cycles in complements of sparse graphs, we determine all planar Ramsey numbers for pairs of cycles.

متن کامل

Tripartite Ramsey numbers for paths

In this article, we study the tripartite Ramsey numbers of paths. We show that in any two-coloring of the edges of the complete tripartite graph K(n, n, n) there is a monochromatic path of length (1− o(1))2n. Since R(P2n+1,P2n+1) = 3n, this means that the length of the longest monochromatic path is about the same when two-colorings of K3n and K(n, n, n) are considered. © 2007 Wiley Periodicals,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 2001

ISSN: 0304-3975

DOI: 10.1016/s0304-3975(00)00232-2